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1. INTRODUCTION

The stochastic equivalent linearization (SEL) method has been widely used in
engineering applications since it was discovered by Booton [1] and Kazakov [2].
Numerous studies have been performed and documented in the context of this
method, such as Caughey [3], Crandall [4], Wen [5], Spanos [6], Iwan et al.
[7], and Kozin [8]. Extensive review of this subject may be found in the
monographs by Lin [9], Roberts and Spanos [10] and in a review paper by Socha
and Soong [11].

While the SEL method has been widely applied to solve various non-linear
dynamic problems, its physics implications, numerical accuracy and e$cient
engineering applications still attract attentions in research and engineering
communities. Therefore, many modi"ed versions of SEL have been proposed (see,
e.g., reference [12]). It may be mentioned, among others, that a work/energy-based
SEL proposed by Zhang et al. [13] is not only better in computational accuracy for
non-linear hardening-spring system but also consistent with the physics involved.
For non-linear softening-spring system, the weighting factor/function or Monte
Carlo simulation technique is introduced to various versions of SEL (e.g., reference
[14}16]). Mathematically, the number of equivalent criteria is limitless, each of
which might improve one statistical response or the other. In practice, however, not
all of these criterions will be used ad hoc. Instead, only physics-based criterion can
be used for engineering applications.

At this junction, let us look at the di!erence, in terms of the physics involved,
between conventional and work/energy-based SEL. The former requires the
minimization of mean square deviation of force between original non-linear and
equivalent linear systems, while the latter requires the minimization of mean square
deviation of energy and/or work between the two aforementioned systems.
Apparently, equivalence in terms of force (restoring and/or damping force) does not
imply the minimization of statistical responses between the two systems. The latter
(not the former) is the primary purpose for the analysis of a stochastic dynamic
system under random excitations. It is known that vibration is the process of
exchange between its work and energy in a system, which is described by a di!erent
set of two parameters (e.g., mass and velocity, force and displacement). Apparently,
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two-parameter-based work and energy of a system provide more comprehensive
information about the dynamic system than the single-parameter-based force.
Since the conventional equivalent criterion is based on the equation of motion (i.e.,
equivalence on one parameter such as the restoring or damping force term), which
could be derived originally and also lose some information from the Lagrange's
equation in the form of energy (kinetic and/or potential) and work (external and/or
dissipated) of a dynamic system, it is expected and also to be proved later that the
work/energy-based equivalence will generate better statistical dynamic responses
than the conventional approach.

While the work/energy-based SEL method indeed improves the computational
accuracy greatly in general, in comparison with the conventional method, there still
exist some cases where it does not work very well. It is, therefore, the aim of this
paper to present a more robust and uni"ed version of work/energy-based SEL from
the viewpoint of both physics and e$ciency as well as e!ective engineering
applications.

The new equivalent criterion requires the minimization of the mean square
deviation of work and/or energy with power k between original and equivalent
systems. The parameter k is so optimized that certain statistical responses of the
original and equivalent dynamic systems subjected to simpli"ed stochastic loads
(usually white noise) will be the same. Apparently, the new equivalent criterion will
not minimize the work and/or energy between the two systems subjected to general
excitations (colored noise) either. Nevertheless, the associated di!erence will be
expected to be small in comparison with other versions of SEL in most of its
engineering applications, since the proposed criterion is exact at certain conditions
(e.g., the white noise condition).

In order to "nd the power parameter k, the exact solution of the FPK equations,
for non-linear stochastic dynamic systems subjected to white noise excitations are
needed. Fortunately, great progress on exact stationary response solutions for
non-linear systems to white noise excitations has been made in the last decade (e.g.,
reference [17}25]). This lays a solid foundation for engineering applications of the
proposed methodology. With the integration of exact solutions from pertinent
FPK equations and work/energy-based SEL with parameter k, the proposed
version of SEL can be directly applied to solve almost any stochastic non-linear
problems met in practical engineering.

2. EQUIVALENT CRITERION

Without loss of generality, consider the following governing equation for the
non-linear vibration of a single-degree-of-freedom system:

yK#byR #u2
1

g(y)"f (t), (1)

with u
1

being the natural frequency of the system if g (y)"y.
The corresponding equivalent linear system is then controlled by

yK#byR #u2
e
y"f (t). (2)
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where u
e

is the equivalent natural frequency and can be found based on the
proposed equivalent criterion

E[;k!;k
e
]2"min. (3)

In equation (3), E stands for ensemble average; ; and ;
e

denote respectively the
potentials of the original non-linear and equivalent linear systems per unit mass
and can be found as
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The proposed equivalent criterion (3) indicates that the mean square deviation of
the potential of power k between original and equivalent systems is required to be
minimized. This criterion is degenerated to the work/energy-based SEL [26] if
k"1 and to the conventional SEL if k"1 and potentials ; are replaced by the
associated restoring forces.

We digress to comment on the physical implications of the proposed equivalent
criterion as well as other pertinent ones. As known to all, the conventional criterion
of SEL is based on the force equivalence in the governing equation of motion,
which of course minimizes the force deviation between the original non-linear and
equivalent linear systems. However, the main objective of SEL is to "nd, at the best
estimation if no exact solution is available, the statistical responses of non-linear
systems such as displacements and accelerations, not those of restoring forces.
Apparently, minimization of restoring forces between original and equivalent
systems does not imply the minimum of deviation of statistical responses in these
two systems. From the viewpoint of the physics involved, particularly for
work/energy of systems, vibration is the process of exchange between its work and
energy in a system. The governing equation of motion, which is in the form of
forces, can also be originally derived from Lagrange's equation in the form of
energy and work of a system. In addition, the conventional equivalence is based on
a sole parameter, i.e., the restoring force for the problem at hand, while the
work/energy-based equivalence is based on two parameters, i.e., restoring force and
displacement response. Therefore, the work/energy-based equivalent criterion thus
sounds more reasonable and comprehensive than the force-based equivalent
criterion. This is true in a general sense. However, like all the other approximate
methods, there are no universal stochastic equivalent linearization methods
applicable to all non-linear dynamic systems. Speci"cally, the detailed work/energy
exchange pattern in a system with a di!erent type of non-linear restoring force (e.g.,
hardening- or softening-type spring and strong or weak non-linearity) will be
di!erent. This implies that even the work/energy-based SEL will not result in the
ubiquitous good estimation of statistical responses for all the non-linear cases.

To this end, the new equivalent criterion of equation (3) is proposed by using
a power index k, attempting to re#ect inherent characteristics for di!erent types of
non-linear dynamic systems with di!erent extent of non-linearity. Therefore, the
objective of this study is to "nd the pertinent optimized values k so that the
statistical responses obtained through the proposed equivalent criterion will be as
close to the true value as possible, within the prescribed framework.
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Theoretically, it is almost impossible to know the optimization of parameter
k for the non-linear systems under colored stochastic excitations without using the
Monte Carlo approach to obtain the corresponding statistical responses. Even if
the Monte Carlo approach is applied, it might be una!ordable since huge
computational e!ort will be needed to determine the optimized values of k in each
and every case that might be useful to engineering applications.

Instead, in this study, the parameter k is obtained as described in the
introduction and detailed as follows.

Speci"cally, equation (3) implies

d
du

e

ME[;k!;k
e
]2N"0 (6)

which yields, with the aid of equations (4) and (5),
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It can be shown (e.g., reference [9]) that under the condition of white-noise
Gaussian excitations with zero mean, the displacement variance p2

y(e)
can be found

as
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where S
0

is the constant two-sided power spectral density. Since the corresponding
exact solution, denoted as p2

y (FPK)
, can be obtained by solving the pertinent FPK

equation, we could then "nd k by letting
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which leads to the following transcendental equation, with the use of equations (7)
and (8):
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For convenience in practical engineering applications, equation (8) could be
further written in the form

p2
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, (12)

where the factor g
W

can be found from
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Equation (12) can be easily used to solve any kind of non-linear system for
statistical responses to colored noise with a good approximation and to white noise
with an exact solution, as long as the pertinent factor g

W
is found in terms of the

associated parameter k obtained by equation (10).

3. EXAMPLES

Consider two typical non-linear systems: hardening- and softening-type
non-linear restoring forces. The corresponding function g(y) is

g(y)"(y#ey3) (14)
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for a hardening-type system and

y
m
"1/J3e. (16)

for a softening-type system.
By solving equation (10) for these two types of non-linear systems, optimized

values for the power parameter k and consequently for factor g
W

can be found,
which are listed in Tables 1 and 2 for di!erent ep2

1
.

Results from Table 1 indicate that the optimized values of k will not be
signi"cantly changed with the value of ep2

1
, a comprehensive index for the extent of

non-linearity, input as well as system characteristics. In addition, the optimized
values k will be roughly one for a hardening-type non-linear system and two for
a softening-type non-linear system. This result veri"es why the work/energy-based
SEL works well for a variety of hardening-type non-linear systems and the square
work/energy-related weighting factor/function-based SEL for softening-type
non-linear systems.
TABLE 1

Optimized values of k

ep2
1

k k
(hardening-type) (softening-type)

0)05 1)156 1)550
0)1 1)110 1)748
0)5 1)006 2)102
1 0)969 2)190
5 0)918 2)266

10 0)904 2)277
50 0)888 2)285

100 0)883 2)286



TABLE 2

Optimized values of g
W

ep2
1

g
W

g
W(hardening-type) (softening-type)

0)05 0)943 1)127
0)1 0)904 1)325
0)5 0)764 2)621
1 0)684 3)683
5 0)508 8)217

10 0)435 11)62
50 0)303 25)98

100 0)225 36)74
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The factors g
W

in Table 2 are obtained based on white noise input, which could
provide, with the aid of equation (11), quick but yet good approximations for the
calculation of statistical responses of a dynamic system under colored noise. This is
particularly important and useful in reliability-based design and fatigue damage
analysis of civil infrastructure systems under turbulent wind loads. This is partly
because large numbers of structural components with non-linear properties will be
involved in a practical design and any complicated time-consuming method for
statistical response calculations should thus be avoided, and partly because the "rst
vibration mode is dominant in the wind-induced response analysis and the
proposed methodology could thus be easily applied. To increase the numerical
accuracy for a dynamic system under colored noise, factors g

W
can always be

calculated based on equation (13) with the use of truly colored noise, instead of
Table 2 with white noise, although the increased accuracy might be negligible for
practical engineering applications.

4. CONCLUDING REMARKS

The proposed work/energy-based SEL with power k as an adjustable parameter
can be easily extended to the non-linear damping force term as well as
multi-degree-of-freedom systems (e.g., reference [26]), which will be reported in
future papers. An additional e!ort in computation of power parameter k and factor
g
W

will be carried out for each and every non-linear case, where exact solutions of
the pertinent FPK equation to white-noise excitations are available. Further
research will also be performed on the e!ects of Gaussian and non-Gaussian
colored noise on power parameter k and factor g

W
.

This papers purpose was to simplify analysis of practical engineering
applications.
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